Search results for " extracellular vesicles."

showing 10 items of 45 documents

A 3D‑scaffold of PLLA induces the morphological differentiation and migration of primary astrocytes and promotes the production of extracellular vesi…

2019

The present study analyzed the ability of primary rat astrocytes to colonize a porous scaffold, mimicking the reticular structure of the brain parenchyma extracellular matrix, as well as their ability to grow, survive and differentiate on the scaffold. Scaffolds were prepared using poly-L-lactic acid (PLLA) via thermally-induced phase separation. Firstly, the present study studied the effects of scaffold morphology on the growth of astrocytes, evaluating their capability to colonize. Specifically, two different morphologies were tested, which were obtained by changing the polymer concentration in the starting solution. The structures were characterized by scanning electron microscopy, and a…

3D culture0301 basic medicineCancer ResearchScaffoldCell SurvivalPolyestersneural tissue engineeringBiochemistryNeural tissue engineeringExtracellular matrixExtracellular Vesicles03 medical and health sciences0302 clinical medicineSettore BIO/13 - Biologia ApplicataCell MovementSettore BIO/10 - BiochimicaGeneticsExtracellularAnimalsSettore BIO/06 - Anatomia Comparata E CitologiaRats WistarCell ShapeMolecular BiologyCells CulturedNeural tissue engineering astrocytes 3D cultures poly‑L‑ lactic acid scaffold extracellular vesicles.Cell ProliferationSettore ING-IND/24 - Principi Di Ingegneria Chimica3D culturesTissue ScaffoldsbiologyChemistryastrocytesCell DifferentiationArticlesMicrovesiclesFibronectin030104 developmental biologyAnimals NewbornOncology030220 oncology & carcinogenesisReticular connective tissuepoly-L-lactic acid scaffoldbiology.proteinBiophysicsMolecular MedicineExtracellular vesicleAstrocyteIntracellularMolecular Medicine Reports
researchProduct

Salivary Biomarkers for Oral Squamous Cell Carcinoma Diagnosis and Follow-Up: Current Status and Perspectives.

2019

Oral cancer is the sixth most common cancer type in the world, and 90% of it is represented by oral squamous cell carcinoma (OSCC). Despite progress in preventive and therapeutic strategies, delay in OSCC diagnosis remains one of the major causes of high morbidity and mortality; indeed the majority of OSCC has been lately identified in the advanced clinical stage (i.e., III or IV). Moreover, after primary treatment, recurrences and/or metastases are found in more than half of the patients (80% of cases within the first 2 years) and the 5-year survival rate is still lower than 50%, resulting in a serious issue for public health. Currently, histological investigation represents the “gold stan…

0301 basic medicineOncologySalivamedicine.medical_specialtyPhysiologyReviewlcsh:Physiology03 medical and health sciencesliquid biopsy salivary biomarkers circulating tumor DNA extracellular vesicles microRNAs early diagnosis prognosis oral squamous cell carcinoma0302 clinical medicinesalivary biomarkersInternal medicinePhysiology (medical)microRNAMedicineLiquid biopsyStage (cooking)Survival ratecirculating tumor DNAlcsh:QP1-981liquid biopsybusiness.industryCancerGold standard (test)medicine.diseasemicroRNAsoral squamous cell carcinomastomatognathic diseases030104 developmental biology030220 oncology & carcinogenesisBiomarker (medicine)prognosisbusinessextracellular vesiclesearly diagnosisFrontiers in physiology
researchProduct

Adipose Stromal/Stem Cell-Derived Extracellular Vesicles: Potential Next-Generation Anti-Obesity Agents

2022

Over the last decade, several compounds have been identified for the treatment of obesity. However, due to the complexity of the disease, many pharmacological interventions have raised concerns about their efficacy and safety. Therefore, it is important to discover new factors involved in the induction/progression of obesity. Adipose stromal/stem cells (ASCs), which are mostly isolated from subcutaneous adipose tissue, are the primary cells contributing to the expansion of fat mass. Like other cells, ASCs release nanoparticles known as extracellular vesicles (EVs), which are being actively studied for their potential applications in a variety of diseases. Here, we focused on the importance …

obesityAdipogenesisQH301-705.5Organic ChemistrySubcutaneous FatMesenchymal Stem CellsGeneral Medicinemetabolic disease/syndromeSettore BIO/09 - FisiologiaCatalysisComputer Science Applicationsadipose tissueInorganic ChemistryChemistrySettore BIO/14 - Farmacologiaadipose stromal/stem cells (ASCs)Adipose stromal/stem cells (ASCs) Adipose tissue Extracellular vesicles Metabolic disease/syndrome ObesityHomeostasisHumansPhysical and Theoretical ChemistryBiology (General)extracellular vesiclesMolecular BiologyQD1-999SpectroscopyInternational Journal of Molecular Sciences
researchProduct

Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment

2018

Standard of care for cancer is commonly a combination of surgery with radiotherapy or chemoradiotherapy. However, in some advanced cancer patients this approach might still remaininefficient and may cause many side effects, including severe complications and even death. Oncolytic viruses exhibit different anti-cancer mechanisms compared with conventional therapies, allowing the possibility for improved effect in cancer therapy. Chemotherapeutics combined with oncolytic viruses exhibit stronger cytotoxic responses and oncolysis. Here, we have investigated the systemic delivery of the oncolytic adenovirus and paclitaxel encapsulated in extracellular vesicles (EV) formulation that, in vitro, s…

0301 basic medicine3003Lung NeoplasmsCancer therapymedicine.medical_treatmentPharmaceutical ScienceOncolytic viruseschemistry.chemical_compoundpaclitaxelkeuhkosyöpä0302 clinical medicineMedicineMice Inbred BALB CExtracellular vesiclesCHEMOTHERAPYCombined Modality Therapy3. Good healthxenograft animal modelPaclitaxelLiver317 Pharmacy030220 oncology & carcinogenesisonkolyyttiset viruksetcancer therapyFemaleLung canceronkolyyttinen virushoitoOncolytic adenovirusEFFICIENCYPaclitaxelCancer therapy; Drug delivery; Extracellular vesicles; Lung cancer; Oncolytic viruses; Paclitaxel; Xenograft animal model; 30033122 CancersMice NudeXenograft animal modelta3111OVARIAN-CANCERVIROTHERAPY03 medical and health sciencesCell Line TumorAnimalsHumansVirotherapyLung cancerChemotherapyADENOVIRUS RECEPTORsyöpähoidotbusiness.industryta1182CancerENDOSTATINmedicine.diseaseta3122Antineoplastic Agents PhytogenicGENEOncolytic virusMODELlung cancer030104 developmental biologychemistryviroterapiaDrug deliveryCELLSdrug deliveryCancer researchbusinessOvarian cancersolunulkoiset vesikkelitSpleen
researchProduct

Exosome levels in human body fluids: A tumor marker by themselves?

2016

Despite considerable research efforts, the finding of reliable tumor biomarkers remains challenging and unresolved. In recent years a novel diagnostic biomedical tool with high potential has been identified in extracellular nanovesicles or exosomes. They are released by the majority of the cells and contain detailed molecular information on the cell of origin including tumor hallmarks. Exosomes can be isolated from easy accessible body fluids, and most importantly, they can provide several biomarkers, with different levels of specificity. Recent clinical evidence shows that the levels of exosomes released into body fluids may themselves represent a predictive/diagnostic of tumors, discrimin…

30030301 basic medicinePharmaceutical ScienceExosomesBioinformaticsExosome03 medical and health sciencesTumor BiomarkersProstate cancer0302 clinical medicineBody FluidNeoplasmsBiomarkers TumorHumansMedicineHigh potentialTumor markerBiomarkers; Body fluids; Early diagnosis; Exosomes; Extracellular vesicles; Follow-up; Prostate cancer; Biomarkers Tumor; Body Fluids; Humans; Neoplasm Recurrence Local; Neoplasms; Exosomes; 3003Prostate cancerSettore BIO/16 - Anatomia Umanabusiness.industryFollow-upHealthy subjectsCancerBiomarkerExtracellular vesiclesEarly diagnosiEarly diagnosismedicine.diseaseMicrovesiclesBody FluidsExosomeBody fluids030104 developmental biology030220 oncology & carcinogenesisNeoplasmExtracellular vesicleNeoplasm Recurrence LocalbusinessBiomarkersHumanEuropean Journal of Pharmaceutical Sciences
researchProduct

Can Be miR-126-3p a Biomarker of Premature Aging? An Ex Vivo and In Vitro Study in Fabry Disease

2021

Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population

SenescencePremature agingAdultMalesenescenceAdolescentPopulationsmall extracellular vesiclesUmbilical veinArticleAndrologyExtracellular VesiclesYoung AdultHUVECIn vivosmall extracellular vesicleHuman Umbilical Vein Endothelial CellsmiR-126-3pMedicineHumanseducationlcsh:QH301-705.5Cellular SenescenceAgedAged 80 and overSettore MED/04 - Patologia Generaleeducation.field_of_studySphingolipidsFabry diseasemicroRNAbusiness.industryagingAging PrematureGeneral MedicineMiddle Agedmedicine.diseaseFabry diseaseendothelial cellsMicroRNAslcsh:Biology (General)endothelial cellBiomarker (medicine)NanoparticlesFemaleGlycolipidsbusinessReactive Oxygen SpeciesEx vivoBiomarkersCells
researchProduct

Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS

2023

Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompt…

Inorganic ChemistryOrganic ChemistryGeneral MedicinePhysical and Theoretical Chemistrycentral nervous system extracellular vesicles chaperones system aging neurodegenerationMolecular BiologySpectroscopyCatalysisComputer Science Applications
researchProduct

Oligodendroglioma cells synthesize the differentiation-specific linker histone H1˚ and release it into the extracellular environment through shed ves…

2013

Chromatin remodelling can be involved in some of the epigenetic modifications found in tumor cells. One of the mechanisms at the basis of chromatin dynamics is likely to be synthesis and incorporation of replacement histone variants, such as the H1° linker histone. Regulation of the expression of this protein can thus be critical in tumorigenesis. In developing brain, H1° expression is mainly regulated at the post-transcriptional level and RNA-binding proteins (RBPs) are involved. In the past, attention mainly focused on the whole brain or isolated neurons and little information is available on H1° expression in other brain cells. Even less is known relating to tumor glial cells. In this st…

Cancer ResearchOligodendrogliomaGene Expressionmedicine.disease_causeHistonessheddingHistone H1Settore BIO/10 - BiochimicaGene expressionmedicineAnimalsRNA MessengerEpigeneticsRats WistarSettore BIO/06 - Anatomia Comparata E CitologiaTransport Vesicleshistone variantsCells CulturedCell NucleusMessenger RNAbiologyBrain NeoplasmsastrocytesBrainRNA-Binding ProteinsArticlesH1° histoneCell cycleChromatin Assembly and DisassemblyRatsChromatinCell biologyCell Transformation Neoplasticoligodendroglioma cellsHistoneOncologyoligodendroglioma cells astrocytes post-transcriptional regulation histone variants H1˚ histone RNA-binding proteins extracellular vesicles sheddingbiology.proteinextracellular vesiclesCarcinogenesispost-transcriptional regulation
researchProduct

Extracellular Vesicles Shed by Melanoma Cells Contain a Modified Form of H1.0 Linker Histone and H1.0 mRNA-binding Proteins

2016

Extracellular vesicles (EVs) are shed in the extracellular environment by both prokaryotes and eukaryotes. Although produced from both normal and cancer cells, malignant cells release a much higher amount of EVs, which also contain tumor-specific proteins and RNAs. We previously found that G26/24 oligodendroglioma cells shed EVs that contain the pro-apoptotic factors FasL and TRAIL1-2. Interestingly, G26/24 release, via EVs, extracellular matrix remodelling proteases3, and H1° histone protein4, and mRNA. To shed further light on the role of EVs in discarding proteins and mRNAs otherwise able to counteract proliferative signals, we studied a melanoma cell line (A375). We found that also thes…

0301 basic medicineCancer ResearchCellular differentiationBlotting WesternFluorescent Antibody TechniqueMYEF2ApoptosisRNA-binding proteinexosomesmembrane vesiclesReal-Time Polymerase Chain ReactionChromatography AffinityHistones03 medical and health sciencesH1.0 linker histone; RNA-binding proteins (RBPs); extracellular vesicles (EVs) membrane vesicles (MVs); exosomes; MYEF2Settore BIO/10 - BiochimicaTumor Cells CulturedHumansexosomeSecretionRNA MessengerSettore BIO/06 - Anatomia Comparata E Citologiamelanoma cell line (A375) myelin expression factor-2 (MYEF2)MelanomaTranscription factorCell ProliferationH1.0 linker histonebiologyReverse Transcriptase Polymerase Chain ReactionEXTRACELLULAR VESICLESRNA-Binding ProteinsRNACell DifferentiationArticlesCell biologyBlotCell Transformation Neoplastic030104 developmental biologyHistoneOncologySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationCancer cellbiology.proteinRNA-binding proteins (RBPs)extracellular vesicles (EVs) membrane vesicles (MVs)
researchProduct

Platelet Pathogen Reduction Technologies Alter the MicroRNA Profile of Platelet-Derived Microparticles

2020

Despite improvements in donor screening and increasing efforts to avoid contamination and the spread of pathogens in clinical platelet concentrates (PCs), the risks of transfusion-transmitted infections remain important. Relying on an ultraviolet photo activation system, pathogen reduction technologies (PRTs), such as Intercept and Mirasol, utilize amotosalen, and riboflavin (vitamin B2), respectively, to mediate inactivation of pathogen nucleic acids. Although they are expected to increase the safety and prolong the shelf life of clinical PCs, these PRTs might affect the quality and function of platelets, as recently reported. Upon activation, platelets release microparticles (MPs), which …

0301 basic medicineAmotosalenmedicine.medical_specialtySmall RNAlcsh:Diseases of the circulatory (Cardiovascular) systemmirasolCardiovascular Medicine030204 cardiovascular system & hematology03 medical and health sciences0302 clinical medicineclinical platelet concentrateInternal medicinemicroRNAmedicinePlateletHematologiPathogenOriginal ResearchRegulation of gene expressionHematologymicroRNApathogen reductionChemistryclinical platelet concentrate; pathogen reduction; mirasol; intercept; extracellular vesicles; small RNA-sequencing; microRNAHematology3. Good healthCell biologysmall RNA-sequencing030104 developmental biologylcsh:RC666-701extracellular vesiclesCardiology and Cardiovascular MedicineFunction (biology)interceptFrontiers in Cardiovascular Medicine
researchProduct